Nagata Rings, Kronecker Function Rings and Related Semistar Operations

نویسندگان

  • MARCO FONTANA
  • ALAN LOPER
چکیده

In 1994, Matsuda and Okabe introduced the notion of semistar operation. This concept extends the classical concept of star operation (cf. for instance, Gilmer’s book [20]) and, hence, the related classical theory of ideal systems based on the works by W. Krull, E. Noether, H. Prüfer and P. Lorenzen from 1930’s. In [17] and [18] the current authors investigated properties of the Kronecker function rings which arise from arbitrary semistar operations on an integral domain D. In this paper we extend that study and also generalize Kang’s notion of a star Nagata ring [30] and [31] to the semistar setting. Our principal focuses are the similarities between the ideal structure of the Nagata and Kronecker semistar rings and between the natural semistar operations that these two types of function rings give rise to on D.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Local–global Properties for Semistar Operations

We study the “local” behavior of several relevant properties concerning semistar operations, like finite type, stable, spectral, e.a.b. and a.b. We deal with the “global” problem of building a new semistar operation on a given integral domain, by “gluing” a given homogeneous family of semistar operations defined on a set of localizations. We apply these results for studying the local–global beh...

متن کامل

Semistar dimension of polynomial rings and Prufer-like domains

Let $D$ be an integral domain and $star$ a semistar operation stable and of finite type on it. We define the semistar dimension (inequality) formula and discover their relations with $star$-universally catenarian domains and $star$-stably strong S-domains. As an application, we give new characterizations of $star$-quasi-Pr"{u}fer domains and UM$t$ domains in terms of dimension inequal...

متن کامل

A Generalization of Kronecker Function Rings and Nagata Rings

Let D be an integral domain with quotient field K. The Nagata ring D(X) and the Kronecker function ring Kr(D) are both subrings of the field of rational functions K(X) containing as a subring the ring D[X] of polynomials in the variable X. Both of these function rings have been extensively studied and generalized. The principal interest in these two extensions ofD lies in the reflection of vari...

متن کامل

Graded Integral Domains and Nagata Rings , Ii

Let D be an integral domain with quotient field K, X be an indeterminate over D, K[X] be the polynomial ring over K, and R = {f ∈ K[X] | f(0) ∈ D}; so R is a subring of K[X] containing D[X]. For f = a0 + a1X + · · ·+ anX ∈ R, let C(f) be the ideal of R generated by a0, a1X, . . . , anX n and N(H) = {g ∈ R | C(g)v = R}. In this paper, we study two rings RN(H) and Kr(R, v) = { fg | f, g ∈ R, g 6=...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008